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I .  Phys.: Condens. Maner 7 (1995) 2829-2841. Printed in the UK 

Static structure factors of the XXZ-model in the presence 
of a uniform field 

M Karbacht, K-H Mutter$ and M Schmidt5 
Physics Depamnent. University of WuppertaL 42097 Wuppertal, Germany 

Received 1 November 1994 

Abstract. The sndc structure factors of the XXZ-model in the presence of a uniform field 
are delermined from an exact computation of the ground states at given tool spin on rings with 
N = 4.6,. , . ,28 sites. Against the naive upectation. a weak uniform field strengthens the 
antiferromagnetic order in the V m v e n e  structure factor for the isotropic case. 

1. Introduction 

The antiferromagnetic properties of the one-dimensional spin-1/2 XXZ-model with 
Hamiltonian 

N 

H = 2 ~ [ S l ( x ) S i ( X + l ) + S 2 ( X ) S Z ( X +  I ) + c o s y  S d X ) S 3 ( X + l ) ]  (1.1) 
x= I 

have been studied by analytical [ l ]  and numerical [2,3,4] methods. The critical exponents 
q j ,  j = 1,3, which govern the large-distance behaviour of the spin-spin correlators in the 
ground state: 

( O l S j ( O ) S j ( x ) l O )  --+ - j = 1.3 
X‘1, 

are given by [5] 
I( -1-1-v  f o r O < y < - .  
2 91 = VJ - 

IT 
At finite temperature T the spin-spin correlators decrease exponentially with a rate given 
by the inverse correlation length [6]: 

~ - I ( Y .  T )  - @W)T” 
with the critical exponent 

v = l  

independent of y and 
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It has been shown in [ 3 ]  that the structure factors 

Si(y.  p = Z x k f N ,  T ,  N )  
NP-I 

= 1 + (-1)'4(0~S,(O)Sj(N/2)10) + 8 (OlSj(O)Sj(~)lO)coS(p~) 
I=I 

are most suited for extracting the critical behaviour from finite systems. In [ 3 .  41 we have 
studied the static structure factors in the following three limits: 

p = "  T = O  N - t C O  
P + T  T = O  N = C O  
p = "  T + O  N = m .  

The transverse and longitudinal structure factors have a common form in each of these 
limits: 

where 

are the 'running variables', The common form reflects the fact that the structure factors 
scale in the critical regime as 

P-" T + O  N + w  (1.3) 

if we keep 

fixed. The antiferromagnetic properties of the model are manifested in the singularities 
of the structure factors in the limit (1.3). The transverse structure factors are infinite in 
this limit; they develop a 'hard' singularity. In contrast, the longitudinal structure factors 
stay finite. Their critical behaviour is bidden in sub-leading terms which produce a 'soft' 
singularity. Away from the critical regime (1.3) the antiferromagnetic properties are lost. 

Table 1. Magnetization and the correspondinr h-fields, 

M 1/8 1/6 114 1/3 318 1 / 2  

h ( y  =O) 0.96 1.20 1.59 1.83 1.91 2.00 
h ( y  = 0 . 1 ~ )  0.93 1.17 1.54 1.78 1.86 1.95 
h ( y  =0.2rr) 0.83 1.06 1.41 1.64 1.72 1.81 
h ( y  = 0.5n) 0.38 050 0.71 0.87 0.92 1.00 

There are further possibilities for destroying antiferromagnetic 0rdering-e.g. by 
applying a uniform external field h or by frustration-i.e. by switching on a next-to-nearest 
neighbour interaction. In this paper we are going to study the effect of a uniform magnetic 
field on the zero-temperature structure factors. For this purpose we have determined the 
static structure factors in  the ground states 1.7,) of the Hamiltonian (1.1) at given total spin S3. 
The ground states were computed with a L&ICZOS algorithm on rings with N = 4,6, . . . ,28 
sites. 
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We will discuss the static structure factors as functions of the magnetization M = &/N. 
The known [I,  71 magnetization curve translates M into the field strength h. For con- 
venience, we list in table 1 the h-field values corresponding to our M-values. 

The outline of the paper is as follows. In sections 2 and 3 we discuss the characteristic 
features of the longitudinal structure factors, such as the p- and M-dependence and the 
finitesize effects. The same is done for the transverse structure factors in sections 4 and 5. 

2. The longitudinal structure factors at fixed magnetization 

The longitudinal structure factor of the XX-model ( y  = n / 2 )  is known from the exact 
solution obtained by Niemeijer [SI in the fermion representation: 

where 

p , ( M )  = n(l - 2 M ) .  (2.2) 

Though the result of 181 has been derived for the thermodynamical limit N + 00, equation 
(2.1) turns out to be correct for all system sizes with N = 4,6.8.. .. The linear behaviour 
in p has been found before [3] for the case where M = 0. 

x 

Figure 1. The longitudinal StNCWe factor versus momentum p and magnetiwtion M with a 
ridge dong the line p , ( M )  = x(l -2M). for N =20,22..  _.  ,28. 

Let us next turn to the isotropic caSe where y = 0. Figure 1 presents a panoramic 
view of the longitudinal smcture factor with N = 20.22, . . . ,28. The emergence of the 
singularity at p = z, M = 0 is clearly visible. Along the momentum axis for M = 0 we 
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Figure 2. A campanson o l  rhe longitudinal Emclwe fxron for y = x/Z (equation (2.1)) and 
y = 0 for M = 114 (0) .  113 (-1, respectively. 

see the logarithmic singularity 

S3(y = 0, p ,  M = 0) = r,(O) In I (2.3) ( -9 
discussed in [3]. Along the magnetization axis where 

p = p o = r r  M = & / N + O  

we observe a logarithmic singularity in M. The same type of singularity is also found in 
the limit 

p = p d M )  M - 0  (2.5) 
where ps(M) is given in (2.2). The longitudinal structure factor has its maximum at 
p = p,(M), with M fixed. With increasing strength of the uniform field the maximum 
position moves from p = n to p = &-i.e. from antiferromagnetic to ferromagnetic order. 
Such behaviour has been conjectured by Muller [9] etal. Indications for this have been found 
also by Parkinson and Banner [ 101 and Ishimura and Shiba [ 111 for small systems ( N  < 14). 
Johnson and Fowler LIZ] were able to reformulate the isotropic Heisenberg model for large 
spins and magnetizations close to saturation in terms of a gas of magnons, Fortuitously 
their prediction for the longitudinal structure factor in  the limit M + 1/2 is identical 
with the exact result (2.1) for the XX-model. In figure 2 we compare the longitudinal 
structure factors for y = 0 and y = a12 at M = 114 and M = 113. For M = 1/3 the 
structure factors almost coincide. For smaller M-values, however, thc isotropic structure 
factor deviates from (2.1). The cusp along the line (2.2) becomes more pronounced with 
decreasing values of M. 

Looking at the finite-size effects which will be analysed in the next section we find an 
N - 2  behaviour away from the cusp and a slower decrease. N-" with 6, 0.5, at the cusp 
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Figure 3, The scaling of &e longitudinal structure factors S3(y = 0, p ,  M ,  N I ,  j = 0 . 3  with 
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p = p , ( M ) .  The change in the finite-size behaviour signals the emergence of a non-analytic 
behaviour in the thermodynamical limit. 

We have also determined the longitudinal structure factors for the anisotropies y/x = 
0.1.0.2. The p-M dependence of the longitudinal structure factor looks similar to that in 
the isotropic case. Instead of an infinity we find a peak at p = K, M = 0. In the limit 
p + z, M = 0 the structure factor is adequately described by (1.2) with U = p .  In the 
limit M + 0. p = R we find again a behaviour of the form (1.2) with a running variable 

The appearence of the cusp along the line p = p l ( M )  is indeed independent of the 
anisotropy parameter y .  For increasing values of y the cusp is less pronounced. 

3. Finite-size analysis of the longitudinal structure factor 

In the critical regime 

p + x  N - w  M = - - - - - t O  T + O  (3.1) 
s3 
N 

we expect the longitudinal structure factors to obey finitesize scaling: 

S3@, p ,  M = S 3 / N ,  T ,  N )  = g3W 21. ZZ. Z3)&(Y.  p .  M ,  T, N = 00). 

In the combined limit (3.1) we have to keep, z l , z ~ - d e f i n e d  in (1.4)-fixed, and 

(3.2) 

23 = M N  = S,. 
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Figure 4. (a)  An estimaIe of the thermodynamical limit for the difference A&. M, N = w) 
(equation (3.3)) for momentum po = n: solid symbals represen1 results from the finire-sire 
analysis (3.4). open symbols are results from finite-size scaling (3.6). (b) As figure (a) but for 
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M for momentum p = n. Ib) As (0) but for the isotmpic model (y  = 0) .  
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In [41 we checked finite-size scaling in the combined limit 

T + O  N + 00 z2 fixed 

and 

p = I I  M = 0. 

It was found that finite-size scaling works for the transverse structure factors for all y -  
values. In contrast, finite-size scaling breaks down for the longitudinal structure factors if 
y z 0.3~. 

In this section we are going to study consequences of the ansarz (3.2) in the limits (2.4) 
and (2.5) at zero temperature. The behaviour of the isotropic structure factor can be read 
from ( 1.2): 

h4-0 M 
rd0) In - 

Mi 
s3(y = 0, p = II. M, N = CO) 

where i = 0 ,3  stands for the two limits (2.4). (2.5). The isotropic structure factors for 
finite systems with N sites scale with M (for M # 0) and are linear in - In M in the h i t  
M + 0, as can be seen from figure 3. Finite-size effects are small for po = II but rather 
large for p3 = x ( l  - 2 M ) .  We have studied the finite-size effects in the differences 

A , ( y = O , M , N ) = S ~ ( y = O , p , , M , N ) + l n ( 2 M )  j = O , 3  (3.3) 

for fixed magnetizations: 

1 2 .  N = 8 , 1 6 2 4  

M =  [!‘I’ I .  

1 2 .  
6 ’ 6 ’  

which can be realized on the systems with size N. The N-dependence of the difference 
(3.3) can be parametrized via 

N = 4,8, 12, 16,20,24,28 

N = 6. 12. i8,M 

Ao(Y, M ,  N )  = Ao(yq M) + C O ( Y ,  M)N-’ 
&(Y. M, N )  = A)W, M )  + c3(yI M W J 3  

(3.4) 
8, = 0.5. 

In our finite-size analysis we have also included the magnetizations 

N = 10,20 I 2  3 4 ,  

N=12 ,24  

[ L L L L L L .  14’ 14’ 14’ 14’ 14’ 14 ’ N = 14,733 

which occur for two systems. Here we have assumed that the finite-size dependence 
is described correctly by (3.4). The extrapolations of the structure factors to the 
thermodynamical limit are represented by the the solid dots in figure 4. 

So far our estimates of the thermodynamical limit are restricted to magnetizations 
M > 1/14 due to the finiteness of our systems N < 28. Additional information on 
the structure factors for the M-values 

N = 14, 16, . . . ,2S (3.5) 

closer to the critical point M = 0 can be obtained if finite-size scaling (3.2) holds for the 
longitudinal structure factors in the limits (2.4), (2.5) where we keep 23 = S3 fixed. This 

1 M = -  
N 
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variable is just 1 for the sequence (3.3, and we can compute the scaling function at this 
value from 

S3(y = 0, p = pj, M = 1/14, N = 14) 
S3(y = 0, p = p j ,  M = 1/14. N = CO)' 

g j ( ~ , ~ 3 ) I  = 
L I = I  

In this way we get from the finite-size scaling ansarz (3.1) in the limits (2.4), (2.5) an 
estimate of the thermodynamical limit of the structure factors: 

s3(Y 0, p = pj, M = 1 / N ,  N )  
s3(Y = 0, p = pj, M, N = 00) = j = 0 , 3  (3.6) 

Pj(Y.  1) 

for the sequence of M-values in (3.5). The result for the differences (3.4) is marked by the 
open dots in figures 4(a),  (b). 

We have repeated the finite-size analysis-described above for the isotropic case-for 
y/r = 0.1,0.2. The resulting estimate of the thermodynamical limit 

Aj(y, M ,  N = 00) = &(y ,  pj ,  M, N = 00) - &(y,  M) j = 0 ,3  

versus the variable 

is represented in figures 4(a), (b)  by the triangles and squares, respectively. 

4. The transverse structure factors at fixed magnetization 

The most remarkble property of the transverse structure factor is its approximate constancy: 

Sl(y, p .  M .  T = 0, N )  x 2M for 0 < p < 2n M (4.1) 

which has been found by Muller et ol [9] for small systems for the isotropic case y = 0. 
For S, = M N  = N / 2  - 1 equation (4.1) can be easily proven to be exact by means of the 
Bethe ansafz solution. For S3 < N / 2  - 1 and 0 < p < Z M n ,  however, equation (4.1) is 
not exact. As an example we present in figures 5(a), (b) the momentum dependence of SI 
at M = 1/4,1/3, N = 4 , 6 , .  . . ,28 for y = n/2 and y = 0, respectively. The constancy 
in the regime where p < 2nM is striking. Deviations from (4.1) can be seen on a scale 
magnified by a factor 100 in the inset of figures 5(a), (b). These deviations follow a single 
scaling curve which increases monotonically with momentum p. On the scaling curve 
finite-size effects die out as N-'. At p = 2 M z ,  however, significant finite-size effects of 
the order 

Beyond the regime (4.1) the transverse structure factor of the XX-model ( y  = r / 2 )  is 
linear in (1 -p /n ) - ' " ,  as can be seen from figure 5(a). Therefore we find the same type of 
singularity for p + n for M = 0 ,  l / 4 ,  1/3. Against naive expectation, antiferromagnetic 
order in the transverse structure factors is not destroyed by an external field. 

In the isotropic case ( y  = 0) the transverse structure factor is approximately linear in 
- ln(1- p / x )  for p > 2 M z ,  as can be seen from figure 5(b). "bk type of singularity was 
found for p + I for M = 0. The slight curvature for M = 1/4 might indicate that the 
type of the singularity has changed here to a power behaviour (1 - p / ~ ) * .  

In the anisotropic case with y/n = 0.1.0.2 and M = 1/4  we find again the constant 
behaviour (4.1) and a linear increase in (1 -p/x)'Jl-'.  Again this type of singularity follows 
from (1.2) with U = p and M = 0. 

with 61 % 1.0 for y = 0 and 61 FZ: 1.3 for y = n / 2  become apparent. 



2840 M Karbach et a1 

5. The transverse structure factor at critical momentum 

Let us start with the XX-model ( y  = nj2). Figure 6(a) shows the transverse structure 
factor for p = IT and N = 4-6 ,  . . . ,28 as function of M. In contrast to what occurs in the 
longitudinal case we have no scaling in M. At M = 0 we know from (1.2) with a = N 
that the transverse structure factors diverge as V% The same type of divergence appears 
at M = 1/4, as can be seen from figure 7(a). Here we compare the N-dependence of 
S l ( y  = n / 2 ,  p = rr, M ,  N )  for M = 0 and M = 114. In both cases there is a linear 
increase in a. 

Let us now turn to the isotropic case ( y  = 0). Here the longitudinal and transverse 
structure factors coincide provided that there is no external field. In the presence of a 
uniform field, however, they differ drastically. At p = n, the longitudinal structurc factor 
is infinite at M = 0, but becomes finite and monotonically decreasing for M > 0. In contrast 
the transverse structure factor stays at infinity for M > 0. Moreover, on finite systems, the 
longitudinal structure factor scales for M > @-as was demonstrated in figure 3-whereas 
the corresponding hansverse structure factor (at p = n) does not scale at all, as can be seen 
from figure 6(b). More surprising, for fixed M z 0 not too large, the transverse structure 
factors increase with the system size N more strongly than for M = 0. A comparison of 
the N-dependence for M = 0 and that for M = 1/4 is shown in figure 7(b).  For M = 1/4 
the increase with InN is definitely steeper, which signals a strengthening of the singularity 
at p = n. Note also that there are deviations from linearity in In N, which increase with M. 
This might indicate a change from a logarithmic behaviour at M = 0 to a power behaviour 
for M > 0. 

In 191 Muller et a/ reported on the transverse structure factor for N = 10; they found 
already that the dominant mode remains situated at p = H independently of the field. Figure 
6(8) tells us that the strengthening of the singularity at p = II becomes more and more 
pronounced with increasing system size N. 

6. Conclusions 

In the presence of a uniform external field in e-direction the static structure factors of the 
XXZ-model show up the following features. 

(i) The longitudinal structure factors have a cusp along the line (2.2). In case of thc 
XX-model ( y  = 1112) there are no finite-size effects and the longitudinal structure factor 
is given by (2.1) for all system sizes with N = 4,6, . . .. For smaller values of y and M, 
the cusp becomes sharper. Finitesize effects decrease along the cusp with i V 6 ' ,  63 0.5. 
Away from the cusp we find a more rapid decrease of the order of N-'. 

(ii) The longitudinal structure factor is finite for y # 0 and p -+ n, M -+ 0, but 
develops a logarithmic singularity in this limit for the isotropic case ( y  = 0). This means 
that a uniform field weakens the antiferromagnetic order in the longitudinal structure factor 
for y = 0. 

(iii) The transverse structure factor is almost constant for p < 2 M n  (see (4.1)). Finite- 
size effects die out slowly with N-" with SI % 1 along the line p = 2Mn, but rapidly with 
N-' away from this line. 

(iv) In the limit p + n, with M = 1/4 fixed, we observe a singularity of the type 
(1 - p / r r ) - ' I2  in the transverse structure factor for y = x/2 .  In the isotropic case ( y  = 0) 
this singularity appears to be stronger than - In(1- p / n ) .  This means that a weak uniform 
field strengthens the antiferromagnetic order in the transverse strucure factor for y = 0. 

.I 
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Such a surprising behaviour is implicitly predicted in [13]. 

Therefore the effect of a uniform external field on the longitudinal and transverse structure 
factors for ( y  = 0 ) is similar to the effect of switching on the anisotropy parameter y .  The 
logarithmic singularity found in the isotropic structure factor at p = x changes with y .  It 
is strengthened in the transverse structure factor, but weakened in the longitudinal structure 
factor. 
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